

NGC 4258: Does the jet impact the disk?

- NGC 4258 (M106), Seyfert 1.9, SAB(s)bc, 7.2 Mpc [1]
 - Anomalous radio structure could be jet impacting the disk [2,3]
 - May illustrate the interplay between AGN and star formation
- Previous studies found no evidence of jet-shocked dust [4] • Concluded higher resolution than Spitzer 8 µm is required
- Goal: Explore origin of radio emission and related impacts on ISM
 - Use NIRCam to image shock-excited gas and star formation
 - Search for shocked gas stratification along radio emission
 - Filter-pairs for line extraction via continuum subtraction

Species	Line filter	Continuum filter	Diagnostic Utility
[Fell]	F164N	F162M	J Shocks (<i>v</i> < 300 km/s, T < 8000 K)
Pa-α	F187N	F182M	Star formation rate
H ₂	F212N	F210M	C Shocks (<i>v</i> < 50 km/s, T < 3000 K)
PAH	F335M	F300M	Star formation & PAH survivability
Br-α	F405N	F430M	Star formation rate

• 50% of dither pattern failed due to guide star issues • Remaining observations planned for early 2024

Preliminary Conclusions & Next Steps

- Continuum-subtracted line maps reveal wealth of astrophysics
- \circ [FeII] and H₂ emission coincident with radio emission
 - Suggests radio emission more likely due to shocks than a jet ■ If radio is from a jet, jet must be aligned with disk out to ~6 kpc
- Star-forming regions traced by PAH and Pa- α emission
- CMD identifies candidate YSOs, which fit well to SED model
- Next steps:
 - Complete remaining observations in early 2024
 - Measure impact of nuclear wind on ISM and star formation
 - Examine stratification of shocked gas along radio structure
 - Identify embedded young YSOs via Color-Magnitude diagrams
 - Relate stellar populations and YSOs to galactic structure
 - Determine star formation rate via IMF fitting
 - Search for CO/ice absorption near galaxy center [5]

Acknowledgements and References

NFC and IN were supported by NASA Postdoctoral Program Fellowships at NASA Goddard Space Flight Center administered by Oak Ridge Associated Universities. Data reduction methods were developed from the *jwst* and jhat (Armin Rest, STScI) python libraries.

- 1. Herrnstein et al. Nature 1999, DOI: 10.1038/22972
- 2. Ogle et al. ApJ 2014, DOI: 10.1088/2041-8205/788/2/L33
- 3. Appleton et al. ApJ 2018, DOI: 10.3847/1538-4357/aaed2a 5. Ginsburg et al. 2023, DOI: 10.3847/1538-4357/acfc34
- 4. Laine et al. AJ 2010, DOI: 10.1088/0004-6256/140/4/1084
- 5. Fischer et al. ApJ 2023, DOI: 10.3847/1538-4357/ace1f0

NGC 4258: A Laboratory for AGN and Star Formation Impacts on the ISM Nicholas F Cothard*1, Travis Fischer², Isha Nayak¹, Henrique Schmitt³, Erin Smith¹, Jason Glenn¹ ¹NASA Goddard Space Flight Center, ²Space Telescope Science Institute, ³Naval Research Laboratory, *nicholas.f.cothard@nasa.gov

Composite image of NGC 4258 using continuum-dominated NIRCam filters, with contour lines showing 4.86 GHz emission

Composite image of continuum-subtracted NIRCam data, with contour lines showing 4.86 GHz emission. H₂ and [FeII] trace radio structure. Pa- α and PAH trace star forming regions

Pa- α and H₂ images

Continuum-Subtraction & Line Ratios

• Line extraction via continuum subtraction

- Match background of medium-bandwidth continuum filter images to narrow-bandwidth line images
- Subtract matched continuum background from line images • Compute line ratio maps
- Convolve shortwave to longwave using Webb PSFs
- Reproject onto same pixel grid before taking ratio

Color Magnitude Diagrams/Spectral Energy Distributions

• Use color magnitude diagram to identify stellar populations • F210M-F300M vs F300M: 13,165 total sources identified

- Red clumps (RC)
- Carbon-rich AGB (C-AGB)
- Asymptotic giant branch bump (AGBb)
 - Young stellar objects (YSOs) Possible super giants (SG)
- Red giant branch (RGB) Oxygen-rich AGB (O-AGB)
- 54 **preliminary** young stellar object (YSO) candidates • 53 of the YSOs fit well to YSO SED model
- \circ YSO best fit masses range from 10 to 20 M_{\odot}
- \circ Example SED fit shown for one YSO, yields 12 M_{\odot}

masses between 10 and 20 M_{\odot} .