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Introduction
Interferometers in ground, airborne, and space 
observatories have spurred growth in astronomy 
and astrophysics for decades. We present the 
novel design of microfabricated, silicon- 
substrate based mirrors for use in cryogenic 
Fabry-Perot Interferometers (FPIs) for mid-IR to 
submm/mm instruments in ground (e.g. 
CCAT-prime [1,2]), airborne (e.g. HIRMES), and 
space-based instruments. To achieve high 
resolving power and optical throughput, we use 
a combination of inductive and capacitive gold 
meshes evaporated onto the silicon substrate. 
The other side of the substrate is plasma etched 
with a double-layer metamaterial anti-reflection 
coating (ARC). These silicon-substrate FPIs will 
enable spectroscopic observations with the 
upcoming large IR/submm/mm TES bolometer 
detector arrays. These broad bandwidth of these 
FPIs will:
● Efficiently cover the octave bandwidth 

required for a [CII] intensity mapping 
spectrometer for Epic of Reionization 
investigations on CCAT-prime [1]

● Observe a broad set of diagnostic far-infrared 
fine-structure lines (e.g. [OIII] 52 um to [NII] 
122 um) with a single FPI for airborne or 
space-borne spectroscopy (e.g. HIRMES) [4]

Design and Modeling
Metal Meshes
● Inductive and capacitive meshes [5]

○ Form high and low pass filters
○ Diffraction occurs for λ < p
○ Filter response depends on w/p

● Combining inductive and capacitive 
○ Band-pass or band-stop filters

● Filters simulated in CST Microwave 
Studios

Metamaterial Anti-Reflection Coatings 
● Broadband, sub-percent reflections required by FPI

○ To mitigate parasitic resonances 
○ To optimize throughput

● Metamaterial benefits:
○ Precision control of ARC efficiency
○ Eliminates thermal contraction issues

● ARC depths, indices, and metamaterial geometry 
determined using:
○ Theory of layered dielectrics [8]
○ Equivalent circuit model theory [9]
○ Optimized with CST Microwave Studios
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Simulated transmittance of a FPI and comprising two-layer 
ARC and inductive/capacitive metal meshes calculated 

with CST Microwave Studios

Far-IR FPIs commonly use free-standing metal 
meshes as reflectors [6]. Silicon substrate based 
mirrors promise significant improvements in 
transmission, bandwidth, and mechanical 
stability. 
Silicon substrate FPIs are comprised of:
● Metal mesh reflectors on silicon wafers [7]

○ Provide frequency dependent reflectance
○ Provide control of FPI resolving power

● Metamaterial anti-reflection coatings [10]
○ Sub-wavelength structure etched on silicon
○ Mitigate strong Fresnel reflections of 

silicon
○ Multiple layers → wider bandwidth

Silicon Substrate FPIs

Metal Mesh Deposition

Standard negative liftoff photoresist patterning 
of metal mesh

Microscope photo of patterned inductive gold mesh

Metamaterial Anti-Reflection Coating Fabrication

Double layer metamaterial ARC recipe based on deep reactive ion etching (DRIE) [11].

SEM image of double-layer holes ARC optimized for 100um

● Currently fabricating on optical silicon
○ 1mm broadband double- layer ARCs 
○ 1mm metal mesh reflectors

● FTS measurements coming soon.
● “Fixed” FPI of metal meshes on either side of 

optical silicon wafer, this summer.
● Scanning FPI with pair of mirrors, this fall.
● Exploring super conducting meshes to reduce 

ohmic losses in mesh filters.
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