

Introduction

novel

Design and Modeling

Interferometers in ground, airborne, and space **Metal Meshes**

(e.g.

- Inductive and capacitive meshes [5]
 - Form high and low pass filters
 - Diffraction occurs for $\lambda < p$
 - Filter response depends on w/p
- Combining inductive and capacitive
- Band-pass or band-stop filters
- Filters simulated in CST Microwave Studios

Metal Mesh Deposition

Spin, pattern, develop AZ

nLOF2020 PR (ABM)

Descum nLOF PR

(Anatech Asher)

Evaporate chromium

adhesion layer (CHA Evap.)

Metamaterial Anti-Reflection Coatings

- Broadband, sub-percent reflections required by FPI
 - To mitigate parasitic resonances
 - To optimize throughput
- Metamaterial benefits:
 - Precision control of ARC efficiency
 - Eliminates thermal contraction issues
- ARC depths, indices, and metamaterial geometry determined using:
 - Theory of layered dielectrics [8]
 - Equivalent circuit model theory [9]
 - Optimized with CST Microwave Studios

with a double-layer metamaterial anti-reflection coating (ARC). These silicon-substrate FPIs will enable spectroscopic observations with the upcoming large IR/submm/mm TES bolometer detector arrays. These broad bandwidth of these FPIs will:

observatories have spurred growth in astronomy

and astrophysics for decades. We present the

substrate based mirrors for use in cryogenic

Fabry-Perot Interferometers (FPIs) for mid-IR to

CCAT-prime [1,2]), airborne (e.g. HIRMES), and

space-based instruments. To achieve high

resolving power and optical throughput, we use

a combination of inductive and capacitive gold

meshes evaporated onto the silicon substrate.

The other side of the substrate is plasma etched

submm/mm instruments in ground

design of microfabricated, silicon-

- Efficiently cover the octave bandwidth [CII] intensity required for mapping а Epic Reionization spectrometer for Of investigations on CCAT-prime [1]
- Observe a broad set of diagnostic far-infrared fine-structure lines (e.g. [OIII] 52 um to [NII] 122 um) with a single FPI for airborne or space-borne spectroscopy (e.g. HIRMES) [4]

Silicon Substrate FPIs

Far-IR FPIs commonly use free-standing metal meshes as reflectors [6]. Silicon substrate based mirrors promise significant improvements in bandwidth, and mechanical transmission, stability.

Silicon substrate FPIs are comprised of:

Evaporate gold layer

(CHA Evap.)

Liftoff PR

(Microposit 1165 remover)

Finished, patterned

metal mesh

Equivalent Capacitive **Circuit Model**

Frequency [GHz]

Simulated transmittance of a FPI and comprising two-layer ARC and inductive/capacitive metal meshes calculated with CST Microwave Studios

Metamaterial Anti-Reflection Coating Fabrication

Double layer metamaterial ARC recipe based on deep reactive ion etching (DRIE) [11].

- Metal mesh reflectors on silicon wafers [7] • Provide frequency dependent reflectance • Provide control of FPI resolving power
- Metamaterial anti-reflection coatings [10]
 - Sub-wavelength structure etched on silicon
 - Mitigate strong Fresnel reflections of silicon
 - \circ Multiple layers \rightarrow wider bandwidth

Standard negative liftoff photoresist patterning

of metal mesh

Microscope photo of patterned inductive gold mesh

SEM image of double-layer holes ARC optimized for 100um

SEM image of double-layer pillars ARC optimized for 350um

iture Work	References	Acknowledgements
 Currently fabricating on optical silicon 1mm broadband double- layer ARCs 1mm metal mesh reflectors FTS measurements coming soon. "Fixed" FPI of metal meshes on either side of optical silicon wafer, this summer. Scanning FPI with pair of mirrors, this fall. Exploring super conducting meshes to reduce ohmic losses in mesh filters. 	 Stacey G., et al., SPIE, 2018, 10700-53 Parshley S., et al., SPIE 2018, 10700-220 Vavagiakis E., et al., SPIE, 2018, 10708-64 Douthit G., et al., SPIE, 2018, 10708-59 Dicker S., et al., SPIE, 2018, 10700-122 Ulrich R., Infrared Phys. 1966, DOI: 10.1016/0020-0891(67)90028-0 Sakai K., Genzel L., Review of Inf. and mm. Waves, DOI: 10.1007/978-1-4615-7766-9_5 Ade P., SPIE, 2016, DOI: 10.1117/12.673162 Yeh P., <i>Optical Waves in Layered Media</i>, Wiley, 1988 Biber S. et al., 33rd European Microwave Conference, 2003, DOI: 10.1109/EUMA.2003.341134 Datta R., et al., Appl. Opt. 2013, DOI: 10.1364/AO.52.008747 Gallardo P. A, et al., Appl. Opt. 2017, DOI: 10.1364/AO.56.002796 	 NFC supported by a NASA Space Technology Research Fellowship MDN acknowledges support from NSF award AST-1454881. Work at CNF supported by NASA Grant NNX16AC72G Cornell NanoScale Facility under NSF Grant ECCS-1542081