

Comparing Complex Impedance and Bias Step Measurements of Simons Observatory Transition Edge Sensors Nicholas F Cothard^{*1}, The Simons Observatory Collaboration ¹Applied Physics, Cornell University,*nc467@cornell.edu

Simons Observatory Detectors

- The Simons Observatory [1]
 - Improve cosmological constants constraints
 - \circ Probe sum of neutrino masses
 - Detect high-redshift galaxy clusters
- Characterize dark matter via grav. lensing
- Small and Large Aperture Telescopes [2]
 ~0.5 m (SAT) and ~6 m (LAT) respectively
- Altitude 5190 m on Cerro Toco, Chile
- ~70,000 Transition Edge Sensors (TESs)
 Dichroio LE ME and LINE error
 - Dichroic LF, MF, and UHF arrays
 - 30/40, 90/150, 230/290 GHz
- Single prototype TESs used for optimization [3]

Bias Step Measurements

- Bias step acquisition with Multichannel Electronics (MCE) readout system
 - \circ TES at T_{bath} biased onto transition to %R_N with DC P_{bias}
 - Small amplitude square wave applied on top of DC bias
 - $\circ~$ TES rebiased to another %R $_{\rm N}$ and another bias step is acquired
 - Quickly sample TES response with MCE (~6.4 kHz)

Complex Impedance Measurements

- Complex impedance acquisition with MCE arbitrary waveform generator (AWG)
- TES at T_{bath} biased onto transition to $%R_N$ with DC P_{bias}
- Small amplitude digitized sine waves applied on top of DC bias
 - Stimulation frequencies ranging from 4 Hz to ~ 1.3 kHz
- Quickly sample TES response with MCE (~7.8 kHz)

• Transfer functions (TFs)

- Fit amplitude and phase of bolometer response to stimulation [7]
- Relative amplitude and phase of input and output gives complex-valued TF
- Use superconducting and normal TFs for bias circuit calibration/removal

- Detector time constants driven by:
 - Rotating, cryogenic half-wave plate (SAT)
- Nyquist sampling of beam on sky (LAT)
- Time constant measurement methods:
- Bias steps good for fast effective thermal response characterization in the field
- Complex impedance slower but probes fundamental device parameters

Frequency Band	Target $P_{\rm sat}$ Range	Target $f_{3dB,min}$
LF-1 27 GHz	$0.6-1.0~\mathrm{pW}$	$150~\mathrm{Hz}$
LF-2 39 GHz	$2.7-4.4~\mathrm{pW}$	$150~\mathrm{Hz}$
MF-1 90 GHz	$2.0-3.3~\mathrm{pW}$	$150~\mathrm{Hz}$
MF-2 150 GHz	$5.4-9.0~\mathrm{pW}$	$166 \mathrm{~Hz}$
UHF-1 220 GHz	$16.9 - 28.1 \; \mathrm{pW}$	245 Hz
UHF-2 275 GHz	$22.4 - 37.3 \; \mathrm{pW}$	279 Hz

Background and TES Model

- Irwin & Hilton Single Thermal Block Model [4]
 - Bolometer island suspended from bath
 - Superconductor biased on transition
- Negative electrothermal feedback

- Extracting the effective thermal time constant
- Bolometer time streams split at each step of the square wave
- Single pole exponential fit applied to each step
- Beginning of fit determined by amplitude of square wave
- Mapping the effective thermal time constant
 - Measurements at multiple T_{bath} simulate variety of loading conditions
- Confirm bolometer performance meets requirements
 - Estimate natural time constant by extrapolating to $P_{bias} = 0 \text{ pW}$
 - Fit constant $%R_N$ datasets to two-fluid model [5,6]

- TES complex impedance (Z_{TES})
- \circ Z_{TFS} from TFs using bias circuit calibration and R_N from IV-curve measurement
- Fit model for α , β , C as function of %R_N and T_{bath}
- \circ Heat capacity constrained as constant for all %R_N fits at a given T_{bath}
- \circ Propagate sinusoid fitting errors analytically to Z_{TFS} and input to model fit
- \circ IV-curve measurements of R_N, T_c, G, and P_{bias} assumed negligible uncertainty
- Derived effective thermal time constant roughly agrees with bias steps

NIST MF Full Bling Full TES 150A c19r2	
115mK	

Saturation power tuned by changing G
 Effective thermal time constant

 Function of C, G, P_{bias}, and TES properties
 Tune at expected P_{bias} by changing C

$$\frac{1}{2\pi\tau_{\rm eff}} = f_{\rm 3dB} = f_{\rm nat} \left(1 + \frac{\mathscr{L}}{1+\beta} \right) = \frac{G}{2\pi C} \left(1 + \frac{1}{(1-\beta)} \frac{\alpha P_{\rm bias}}{T_{\rm c}G} \right)$$

• Complex impedance

- \circ Probe fundamental TES parameters α , β , C
- Low frequency limit reduces to Z_{TES}~-R
 High frequency limit reduces to Z_{TES}~R(1+β)

Conclusions

- Time constants measured via bias step and complex impedance
- Both methods roughly consistent and fit well to single island bolometer model
- Bias step fits become less reliable for fast detectors
 - Can be improved by increasing sampling rate

Acknowledgements

This work was funded by the Simons Foundation NFC supported by a NASA Space Technology Research Fellowship MDN acknowledges support from NSF award AST-1454881.

References

1. Galitzki et al, Proc. SPIE 2018, DOI: 10.1117/12.2312985

• Complex impedance fits can be improved with higher stimulation frequencies. ^{* 200}

- \circ CZ fits of fast devices poorly constrain β and therefore f_{3dB}
- f_{3dB} limited by fastest bolometer excitation frequency
- Effective thermal time constants meet expectations and SO requirements

Ade et al, JCAP 2019, DOI: 10.1088/1475-7516/2019/02/056
 Stevens et al, JLTP 2020, DOI: 10.1007/s10909-020-02375-9
 Irwin and Hilton, Springer 2005, DOI: 10.1007/10933596_3
 Koopman et al, JLTP 2018, DOI: 10.1007/s10909-018-1957-5
 Irwin et al, J. Appl. Phys. 1998, DOI: 10.1063/1.367153
 Kevin T Crowley, Thesis 2018, http://arks.princeton.edu/ark:/88435/dsp016m311s06t

