

Parallel plate capacitor TiN KID array development for the **Balloon Experiment for Galactic Infrared Science**

Nicholas F Cothard^{*1}, Byeong Ho Eom², Jason Glenn¹, Henry LeDuc², Joanna Perido³, Andrew Beyer², Peter Day² ¹NASA Goddard Space Flight Center, ²NASA Jet Propulsion Laboratory, ³University of Colorado, Boulder *nicholas.f.cothard@nasa.gov

Notional design of the Balloon Experiment for Galactic Infrared Science

- Balloon Experiment for Galactic Infrared Science (BEGINS)
 - Radiation field and dust properties in harsh star-formation environments
- Telescope
 - 0.5 m Cassegrain, aluminum mirrors
 - \circ 12 arcmin angular resolution at 25 μ m
 - \circ 0.2° x 0.1° diffraction limited field of view
- Cryostat
 - Liquid He backed 300 mK ⁴He/³He cooler ~ 2,000 kinetic inductance detectors (KIDs)

Parallel Plate Capacitor Kinetic Inductance Detectors

- Titanium Nitride KIDs [2] • Meandered TiN inductor/absorber
- Parallel Plate Capacitor (PPC) [3]
 - Reduce two-level system noise
 - Reduce pixel footprint
 - Reduce EM field crosstalk
- Fresnel zone plate (FZP) lenses • For test chips
- Micromachined silicon microlenses • For flight arrays

- $R = \lambda/\Delta\lambda \sim 7$ for $\lambda = 25 65 \mu m$
- \circ R = λ/Δλ ~ 3 − 6 for λ = 70, 100, 160, 250 µn
- Targeted Flights
 - Test flight: Fort Sumner, NM
 - Science flight: Esrange, Sweden

Conceptual 50-cm Cassegrain telescope with baffle tube and instrument cryostat.

Conceptual BEGINS gondola from StarSpec Technologies with major components labeled. • Continuously linear variable filters [4] \circ Enables 25 – 65 µm SED mapping

Lithographically patterned gold FZP lenses. Each set of rings comprises a FPZ lens and is aligned to a KID absorber on the chip's backside.

PPC KIDs. A meandered TiN inductor comprises the absorber. Unique capacitors define the unique resonant frequency of each detector.

70 K

80 K

90 K

95 K

Measuring dust + polycyclic aromatic hydrocarbons (PAHs) with BEGINS RMS / Max = 0.974 Jy / 100 JyRMS / Max = 1.368 Jy / 3 Jy • Spectral energy 42°45' W75N 🕯 🥂 distributions (SEDs)

PPC TiN KID Noise Performance

- Typical resonator freqs: 180 560 MHz

Conclusions and Next Steps

Instrumentation development for BEGINS

Acknowledgements

NFC was supported by an NPP Fellowship at NASA GSFC, administered by ORAU. JP was supported by a NASA FINESST Graduate Fellowship. The KID development was supported through a NASA APRA grant (80NSSC19K0489) and through JPL's Research and Technology Development program. We acknowledge Brandon Hensley, Howard Smith, and Erik Rosolowsky for contributions to the BEGINS science development.

• TiN parallel plate capacitor KIDs

Calibrated blackbody measurements and NEP calculations coming soon PPC TLS and crosstalk characterization coming soon

• Optical coupling

Fresnel zone plate lenses work prototype KID measurements 3D silicon micromachined microlens array development underway Silicon-based continuously linear variable filters

Fixed bandpass filters working well (see poster [4]) Linear variable development in progress

References

B. Draine & B. Hensley, ApJ, 2021, DOI: <u>10.3847/1538-4357/abd6c6</u> 2. H. Leduc et al., Appl Phys Lett 2010, DOI: <u>10.1063/1.3480420</u> 3. S. Golwala et al., LTD 2019 [available online] 4. J. Perdio et al., SPIE 2022, 12190-111 (this conference)