Three-Dimensional Microwave Kinetic Inductance Detectors

Nicholas F. Cothard, Thomas R. Stevenson, Christine A. Jhabvala, Jason Glenn

NASA Goddard Space Flight Center

What are 3D MKIDs?

- Microwave Kinetic Inductance Detectors
 - Easily multiplexed infrared/microwave sensors
 - Pixel footprint typically dominated by large 2D capacitors
 - Majority of focal plane is not photon-sensitive
- 3D MKIDs
 - Minimize capacitor footprint by using third dimension
 - \circ Smaller resonator footprint \rightarrow Denser focal planes
 - Deep etch holes into silicon and conformal coat with ALD
- Applications
 - Dense focal plane arrays for future mid and far-IR missions where size, mass, and cooling power are expensive

Prototype device fabrication

La = 18.03 µm Lb = 112.38 µm VEGA3 TESCAN SEM HV: 20.0 kV WD: 8.26 mm view field: 124 um Det: SE 20 um M MAG: 1.68 kx Date(m/d/v): 03/29/23 GSFC Detector Development La

TiN microstrip over TiN groundplane

3

3

Measured ALD layer properties:

TiN#1 T_c = 3.64 K, R_s = 33 Ω/sq Al2O3 ε_r = 8.75 TiN#2 T_c = 3.97 K, R_s = 40 Ω/sq

Packaging and cryogenic testing

3D MKID resonator array chip in test package

3D MKIDs installed in ADR cryostat, wrapped with lead tape for magnetic shielding

Prototype Characterization₁₄

- Yield
 - 16 of 16 resonators found (100%)
 - Successful on multiple wafers
 - Resonator frequencies near expectation given measured T_c
- Uniformity

5

- Consistent quality factors
- Consistent response to temperature
- Consistent response to tone power
- Best performance at ~ -75 dBm

Noise Performance

- Fractional frequency noise
 - TLS and GR contributions
 - TLS noise suppressed at high drive powers
 - Where Q_i is maximized
 - Short quasiparticle lifetimes
 - GR roll-off softened by 50 µs outdiffusion
 - At 55 mK, fitted recombination lifetime 15 μs

Prototype Device Sensitivity

- Using expected density of states for our TiN
- \circ $\,$ And inductor volume 22 μm^3
- NEP < $1.3x10^{-18}$ W/rtHz for f > 100 Hz
- To be confirmed by upcoming optical measurements at $\lambda = 25 \ \mu m$

Conclusions and Next Steps

- Prototype 3D MKIDs
 - Successful fabrication demonstrated well-controlled etch and ALD processes
 - 100% yield, great reproducibility and uniformity
 - 3D MKIDs prefer high tone powers, good for TLS suppression
 - First devices show NEPs < 1.3×10^{-18} W/rtHz for f > 100 Hz

- Future work
 - \circ $\,$ Confirm NEP estimate via optical testing with 25 μm blackbody source
 - Explore different absorber designs to maximize sensitivity and footprint
 - \circ Add high-T_c quasiparticle traps around absorber to optimize for low optical loads
 - Increase array size to kilopixel and eventually 10s and 100s of kilopixels

